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Abstract. Prevalence of the Infrastructure as a Service (IaaS) clouds has enabled
organizations to elastically scale their stream processing applications to public
clouds. However, current approaches for elastic stream processing do not con-
sider the potential security vulnerabilities in cloud environments. In this paper
we describe the design and implementation of an Elastic Switching Mechanism
for data stream processing which is based on Homomorphic Encryption (Ho-
moESM). The HomoESM not only does elastically scale data stream processing
applications into public clouds but also preserves the privacy of such applica-
tions. Using a real world test setup, which includes an email filter benchmark and
a web server access log processor benchmark (EDGAR) we demonstrate the ef-
fectiveness of our approach. Multiple experiments on Amazon EC2 indicate that
the proposed approach for Homomorphic encryption provides significant results
which is 10% to 17% improvement of average latency in the case of email filter
benchmark and EDGAR benchmarks respectively. Furthermore, EDGAR add/-
subtract operations and comparison operations showed 6.13% and 26.17% av-
erage latency improvements respectively. These promising results pave the way
for real world deployments of privacy preserving elastic stream processing in the
cloud.

Keywords: Cloud computing; Elastic data stream processing; Compressed event
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1 Introduction

Data stream processing conducts online analytics processing on data streams [5]. Data
stream processing has applications in diverse areas such as health informatics [1], trans-
portation [ 16], telecommunications [24], etc. These applications have been implemented
on data stream processing engines [5]. Most of the initial data stream processors were
run on isolated computers/clusters (i.e., private clouds). The rise of cloud computing
era has resulted in the ability of on demand provisioning of hardware and software
resources. This has resulted in data stream processors which run as managed cloud
services (e.g., [10][14]) as well as hybrid cloud services (e.g., Striim [23]).

Stream processing systems often face resource limitations during their operation
due to unexpected loads [2][6]. Several approaches exist which could solve such an
issue. Elastically scaling into an external cluster [15][21], load shedding, approximate
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query processing [20], etc. are some examples. Out of these, elastic scaling has become
a key choice because approaches such as load shedding, approximate computing has
to compromise accuracy which is not accepted by certain categories of applications.
Previous work has been there which used data compression techniques to optimize the
network connection between private and public clouds [21]. However, current elastic
scaling mechanisms for stream processing do not consider a very important problem:
preserving the privacy of the data sent to public cloud.

Preserving the privacy of stream processing operation becomes one of the key ques-
tions to be answered when scaling into a public cloud. Sending the data unencrypted
to the server definitely exposes them to prying eyes of the eavesdroppers. Sending data
encrypted over the network and decrypting them to get original values at the server
may also expose sensitive information. Multiple work has recently being conducted
on privacy preserving data stream mining. Privacy of patient health information has
been a serious issue in recent times [19]. Fully Homomorphic Encryption (FHE) has
been introduced as a solution [9]. FHE is an advanced encryption technique that allows
data to be stored and processed in encrypted form. This gives cloud service providers
the opportunity for hosting and processing data without even knowing what the data
is. However, current FHE techniques are computationally expensive needing excessive
space for keys and cypher texts. However, it has been shown with some experiments
done with HEIib [12] (an FHE library) that it is practical to implement some basic ap-
plications such as streaming sensor data to the cloud and comparing the values to a
threshold.

In this paper we discuss elastic scaling in a private/public cloud (i.e., hybrid cloud)
scenario with privacy preserving data stream processing. We design and implement
a privacy preserving Elastic Switching Mechanism (HomoESM) over private/public
cloud system. Homomorphic encryption scheme of HElib has been used on top of this
switching mechanism for compressing the data sent from private cloud to public cloud.
Application logic at the private cloud is implemented with Siddhi event processing en-
gine [16]. We designed and developed two real world data stream processing bench-
marks called EmailProcessor and HTTP Log Processor (EDGAR benchmark) during
the evaluation of the proposed approach. Using multiple experiments on real-world
system setup with the stream processing benchmarks we demonstrate the effectiveness
of our approach for elastic switching-based privacy preserving stream processing. We
observe that Homomorphic encryption provides significant results which is 10% to 17%
improvement of average latency in the case of Email Filter benchmark. EDGAR com-
parison and add/subtract operations showed 26.17% average latency improvement. Ho-
moESM is the first known data stream processor which does privacy preserving data
stream processing in hybrid cloud scenarios effectively. We have released HomoESM
and the benchmark codes as open source software 34>, Specifically, the contributions of
our work can be listed as follows.

* https://github.com/arosharodrigo/event-publisher
4 https://github.com/arosharodrigo/statistics-collector
5 https://github.com/arosharodrigo/simple-siddhi-server
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— Privacy Preserving Elastic Switching Mechanism (HomoESM) - We design and
develop a mechanism for conducting elastic scaling of stream processing queries
over private/public cloud in a privacy preserving manner.

— Benchmarks -We design and develop two benchmarks for evaluating the perfor-
mance of HomoESM.

— Optimization of Homomorphic Operations - We optimized several homomorphic
evaluation schemes such as equality, less than/greater than comparison. We also do
data batching based optimizations.

— Evaluation - We evaluate the proposed approaches by implementing them on real
world systems.

The paper is organized as follows. Next, we provide related work in Section 2. We
provide the details of system design in Section 3 and implementation of the HomoESM
in Section 4. The evaluation details are provided in Section 5. We make a discussion of
the results in Section 6. We provide the conclusions in Section 7.

2 Related Work

There have been multiple previous work on elastic scaling of event processing systems
in cloud environments.

Cloud computing allows for realizing an elastic stream computing service, by dy-
namically adjusting used resources to the current conditions. Hummer et al. discussed
how elastic computing of data streams can be achieved on top of Cloud computing
[13]. They mentioned that the most obvious form of elasticity is to scale with the input
data rate and the complexity of operations (acquiring new resources when needed and
releasing resources when possible). However, most operators in stream computing are
stateful and cannot be easily split up or migrated (e.g., window queries need to store
the past sequence of events). In HomoESM we handle this type of queries by query
switching.

Stormy is a system developed to evaluate the “stream processing as service” con-
cept [18]. The idea was to build a distributed stream processing service using techniques
used in cloud data storage systems. Stormy is built with scalability, elasticity and multi-
tenancy in mind to fit in the cloud environment. They have used distributed hash tables
(DHT) to build their solution. They have used DHTs to distribute the queries among
multiple nodes and to route events from one query to another. Stormy builds a public
streaming service where users can add new streams on demand. One of the main lim-
itations in Stormy is it assumes that a query can be completely executed on one node.
Hence, Stormy is unable to deal with streams for which the incoming event rate exceeds
the capacity of a node. This is an issue which we address in our work via the concept
of data switching of HomoESM.

Cervino et al. try to solve the problem of providing a resource provisioning mecha-
nism to overcome inherent deficiencies of cloud infrastructure [2]. They have conducted
some experiments on Amazon EC2 to investigate the problems that might affect badly
on a stream processing system. They have come up with an algorithm to scale up/down
the number of VMs (or EC2 instances) based solely on the input stream rate. The goal
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is to keep the system with a given latency and throughput for varying loads by adap-
tively provisioning VMs for streaming system to scale up/down. However, none of the
above-mentioned works have investigated on reducing the amount of data sent to public
clouds in such elastic scheduling scenarios. In this work we address this issue.

Data stream compression has been studied in the field of data mining. Cuzzocrea et
al. have conducted research on a lossy compression method for efficient OLAP [3] over
data streams. Their compression method exploits semantics of the reference application
and drives the compression process by means of the “degree of interestingness”. The
goal of this work was to develop a methodology and required data structures to enable
summarization of the incoming data stream. However, the proposed methodology trades
off accuracy and precision for the reduced size.

Dai et al. have implemented homomorphic encryption library [4] on Graphic Pro-
cessing Unit (GPU) to accelerate computations in homomorphic level. As GPUs are
more compute-intensive, they show 51 times speedup on homomorphic sorting algo-
rithm when compared to the previous implementation. Although computation wise it
gives better speed up, when encrypting a Java String field, its length goes more than
400KB which is too large to be sent over a public network. Hence we used HElib as the
homomorphic encryption library in our work.

Intel has included a special module in CPU, named Software Guard eXtension
(SGX), with its 6th generation Core i5, i7, and Xeon processors [22]. SGX reduces
the trusted computing base(TCB) to a minimal set of trusted code (programmed by the
programmer) and the SGX processor. Shaon e al. developed a generic framework for
secure data analytics in an untrusted cloud setup with both single user and multi-user
settings [22]. Furthermore, they proposed BigMatrix which is an abstraction for han-
dling large matrix operations in a data oblivious manner to support vectorizations. Their
work is tailored for data analytics tasks using vectorized computations, and optimal
matrix based operations. However, in this work HomoESM conducts stream processing
which is different from the batch processing done by BigMatrix.

3 System Design

In this section we first describe the architecture of HomoESM and then describe the
switching functions which determine when to start sending data to public cloud.

The HomoESM architecture is shown in Figure 1. The components highlighted in
the dark blue color correspond to components which directly implement privacy pre-
serving stream processing functionality.

In this system architecture Scheduler collects events from the Plain Event Queue
according to the configured frequency and the timestamp field on the event. Then it
routes the events into the private publishing thread pool and to the public publishing
queue, according to the load transfer percentage and the threshold values.

Receiver receives events from both private & public Siddhi. If the event is from the
private Siddhi, it is sent to the Profiler. If not the event is a composite event and it is
directed to the ‘Composite Event Decode Worker’ threads located inside the Decryptor
which basically performs the decryption function. Finally, all the streams which goes
out from HomoESM run through Profiler which conducts the latency measurements.
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Fig. 1. The system architecture of Homomorphic Encryption based ESM (HomoESM).

In this paper we use the same switching functions described in [5] for triggering
and stopping data sending to public cloud (See Equation 1). It should be noted that
the main contribution of this paper is to describe the elastic privacy preserving stream
functionality. Here ¢y (t) is the binary switching function for a single VM, t is the
time period of interest. L;_1 and D;_; are the latency and data rate values measured
in the previous time period. A time period of 7 has to be elapsed in order for the VM
startup process to trigger. D is the threshold for total amount of data received by the
VM from private cloud.

1,L:i—1 > Ls, T has elapsed.
dvm(t) = ; (H
0,Di—1 < Dg, L1 < Ly Otherwise,

4 Implementation

In this Section first we describe the implementation details of HomoESM in Section 4.1
and we describe the benchmark implementations in Sections 4.2, 4.3, 4.4, and 4.5.

4.1 Implementation of HomoESM

We have developed the HomoESM on top of the WSO2 Stream Processor (WSO2 SP)
software stack. WSO2 SP is an open source, lightweight, easy-to-use, stream processing
engine [26]. WSO2 SP internally uses Siddhi which is a complex event processing
library [16]. Siddhi feature of WSO2 SP lets users run queries using an SQL like query
language in order to get notifications on interesting real-time events.
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High-level view of the system implementation is shown in Figure 2. Input events
are received by the ‘Event Publisher’. Java objects are created for each incoming event
and put into a queue. Event publisher thread picks those Java objects from the queue
according to the configured period. Next, it evaluates whether the picked event needs
to be sent to the private or the public Siddhi server, according to the configured load
transfer percentage and threshold values. If that event needs to be sent to private Siddhi,
it will mark the time and delegate the event into a thread pool which handles sending to
private Siddhi. If that event needs to be sent to public Siddhi, it will mark the time and
put into the queue which is processed by the Encrypt Master asynchronously.

Private
Siddhi
Server

Event
Receiver

Event
chedul
Publisher

Composite Comp
Enerypt Event Encrypted Event
Master Event Decode
Encode Publisher Worker
Private cloud Worker
Public cloud
Public Siddhi Server

Fig. 2. Main components of HomoESM

Encrypt Master thread (see Figure 3 (a)) periodically checks a queue which keeps
the events required to be sent to public cloud. The queue is maintained by the ‘Event
Publisher’ (See Figure 4 (a)). If that queue size is greater than or equal to composite
event size, it will create a list of events equal to the size of composite event size. Next,
it delegates the event encryption and composite event creation task to the ‘Composite
Event Encode Worker’ (see Figure 3 (b)).

Composite Event Encode Worker is a thread pool which handles event encryptions
and composite event creations. First, it combines non-operational fields of each plain
events in the list by the pre-defined separator. Then it converts operational fields into
binary form and combines them together. Next, it pads the operational fields with zeros,
in order to encrypt using HElib API. Finally, it performs encryption on those operational
fields and puts the newly created composite event into a queue which is processed by
the ‘Encrypted Events Publisher’ thread (See Figure 4 (b)).

Firing events into the public VM is done asynchronously. Decision of how many
events sent to the public Siddhi server was taken according to the percentage we have
configured initially. But the public Siddhi server’s publishing flow has max limit of
1500 TPS (Tuples Per Second). If the Event Publisher receives more than the max TPS,
the events are routed back into the private Siddhi server’s VM.

‘Encrypted Events Publisher’ thread periodically checks for encrypted events in the
encrypted queue which is put by the ‘Composite Event Encode Worker’ at the end of the
composite event creation and encryption process (See Figure 3 (b)). First, it combines
non-operational fields of each plain event in the list by the pre-defined separator. If there
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Fig. 3. Data encryption and the composite event creation process at the private Siddhi server. (a)
Encrypt Master thread (b) Composite Event Encode Worker thread

are encrypted events, it will pick those at once and send to public Siddhi server. The
Encryptor module batches events into composite events and encrypts each composite
message using Homomorphic encryption. The encrypted events are sent to the public
cloud where Homomorphic CEP Engine module conducts the evaluation.

We encrypt operand(s) and come up with composite operand field(s) in each HE
function initially, in order to perform HE operations on operational fields in composite
event. For example, in the case of the Email Filter benchmark, at the Homomorphic
CEP engine which supports Homomorphic evaluations, initially it converts the constant
operand into an integer (int) buffer with size 40 with a necessary 0 padding. Then it
replicates the integer buffer 10 times and encrypts using HElib [|1]. Finally, the en-
crypted value and the relevant field in the composite event are used for HElib’s relevant
(e.g., comparison, addition, subtraction, division, etc.) operation homomorphically. The
result is replaced with the relevant field in the composite event and is sent to the Re-
ceiver without any decryption.

The received encrypted information is decrypted and decomposed to extract the
relevant plain events. The latency measurement happens at the end of this flow. ‘Event
Receiver’ thread checks if the event received from the Siddhi server is encrypted with
Homomorphic encryption. If so it delegates composite event into ‘Composite Event
Decode Worker’. If not it will read payload data and calculate the latency (See Figure
5 ().

After receiving a composite event from the Event Receiver the Composite Event
Decode Worker handles all decomposition and decryptions of the composite event (See
Figure 5 (b)). It first splits non-operational fields in the composite event by the pre-
defined separator. Second, it performs decryption on the operational fields using HElib
API and splits the decrypted fields into fixed-length strings. Then it creates plain events
using the splitted fields. Next, it checks each operational fields in the plain event to see



8 A. Rodrigo et al.

Event Publisher i Encrypted Events Publisher
Idle and check | Idle and check
—={ forevents f ted
pericdically 1 " evente
periodically

Send to
public

Is encrypted
cloud? o2

queue
empty?

Mark current
timestamp in
the data and
delegate the
plain events
into a thread
pool to send Send composite
to private encrypted event to
Siddhi server public Siddhi
server

Mark current timestamp in
the data and put plain

' event into the queue which

is processed by the Encrypt
Master asynchronously

@ (b)

Fig. 4. Operation of the Event Publisher and the Encrypted Events Publisher components. (a)
Event Publisher (b) Encrypted Events Publisher

whether it contains zeros and then processes the events. Finally, it calculates the latency
of the decoded events.

Note that we implement the Homomorphic comparison of values following the work
by Togan et al. [25]. For two single bit numbers with « and y, Togan et al.[25] have
shown that the following equations (see Equation 2) will satisfy greater-than and equal
operations, respectively.

r>yeryt+r=1 ?)
r=y&Srct+y+l=1

Togan et al. have created comparison functions for n-bit numbers using divide and
conquer methodology. In our case we derived 2-bit number comparisons as follows.
x120 and y; yo are the two numbers with 2-bits (see Equation 3). Here every ‘+° opera-
tion is for XOR gate operation and every ‘.’ operator is for AND gate operation.

T120 > Y190 & (v1 > Y1) (w1 = y1)(zo > o) = 1
& (xryr+x1) + (z1+ vy + 1) (xoyo +20) =1

S T1.Yy1 + 21+ T1.20.Yo + T1.To+
Y1.20-Yo + Y1-o + To-yo + ro =1
r170 == Y190 & (To +yo + 1).(z1 +y1 +1) =1
< T0.Z1 + To.Y1 + To + Yo-r1+Yo-y1 tyo+1=1
120 < Y1y & (120 > Y1y0) + (T120 == 1%0) +1 =1
& (1.1 + 21 + 21.20-Y0 + T1.T0 + Y1-To-Yo+
Y1-To + To-Yo + o) + (zo-T1 + To.y1+
To+Yo-r1+Yoy1 +yo+1)+1=1

3
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Fig. 5. Event receiving, decomposition, and decryption processes.

Reason that we build up comparison functions for two bit numbers is to apply the
concept of homomorphic encryption and evaluation into the CEP engine. Even for 2-bit
number comparisons, there are a number of XOR and AND gate evaluations need to be
done as above.

After evaluating the individual HE operations at public SP, filtering using those
gate operations happens at private SP. Boolean conditions are evaluated on encrypted
operands using HE with above limitations for input number range, and '"NOT’, ’AND’,
and "OR’ gate operations evaluate at private SP after decrypting/decoding the events
which comes from public SP after HE evaluations.

We have evaluated the HomoESM'’s functionality using four benchmark applica-
tions developed using two data sets. Next, in order to ensure the completeness of this
section we describe the implementation details of the two benchmarks.

4.2 Email Filter Benchmark

Email Filter is a benchmark we developed based on the canonical Enron email data set
[17]. The data set has 517,417 emails with an average body size of 1.8KB, the largest
being 1.92MB. The Email Filter benchmark only had filter operation and was used to
compare filtering performance compared to the EDGAR Filter benchmark which is de-
scribed in the next subsection. The architecture of the Email Filter benchmark is shown
in Figure 6. The events in the input emails stream had eight fields iij_timestamp, fro-
mAddress, toAddresses, ccAddresses, bccAddresses, subject, body, regexstr where all
the fields were Strings except iij_timestamp which was long type. We formatted the
toAddresses and ccAddresses fields to have only single email address to support HElib
evaluations. The criteria for filtering out Emails was to filter by the email addresses
lynn.blair@enron.comand richard.hanagriff@enron.com. The filter-
ing SiddhiQL statement can be stated as in Listing 1.1,
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NOT ((fromAddress is equal to ‘lynn.blair@enron.com’) AND
((toAddresses is equal to ‘richard.hanagriff@enron.com’)
OR (ccAddresses is equal to ‘richard.hanagriff@enron.com’

)))

Listing 1.1. EmailFilter condition.

Publish Filter Metrics
Decision
Taker

InputEmailsStream

FilteredEmails Stream

Composite
Input Output Events after

Composite HE HE HE Plain
Events mEma\IsS!ream EmailsStream moperahuns m Events

. HE equal
Composition Encryptor q

operations Decryptor Decomposition

InputEmails
Stream

®)

HE Logic
Filter

Fig. 6. Architecture of Email Filter benchmark.

4.3 EDGAR Filter Benchmark

We developed another benchmark based on a HTTP log data set published by Division
of Economic and Risk Analysis (DERA) [8]. The data provides details of the usage
of publicly accessible EDGAR company filings in a simple but extensive manner [8].
Each record in the data set consists of 16 different fields hence each event sent to the
benchmark had 16 fields (iij_timestamp, ip, date, time, zone, cik, accession, extension,
code, size, idx, norefer, noagent, find, crawler, and browser). Similar to the Email Filter
benchmark all of the fields except iij_timestamp were Strings. Out of these fields we
used noagent field by adding lengthy string of 1024 characters to the existing value, in
order to increase the events’ size (Note that we have done the same for all the EDGAR
benchmarks described in this paper).

The EDGAR benchmark was developed with the aim of implementing filtering sup-
port. Basic criteria was to filter out EDGAR logs, which satisfy the conditions shown
in Listing 1.2.

(extension == ‘v16003svl.htm’) and (code ==
‘200.0°) and (date == ‘2016—10-01")))
Listing 1.2. EDGAR filter condition.

Most of the EDGAR log events were same and the logs did not have any data rate
variation inherently. Therefore, we introduced varying data rate by publishing events in
different TPS values according to a custom-defined function.

4.4 EDGAR Comparison Benchmark

Using the same EDGAR data set we developed EDGAR Comparison benchmark to
evaluate the performance [7] of Homomorphic Comparison operation. In the EDAGR
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Comparison benchmark We have changed the input format of the zone and find fields
to integer (Int) in order to do comparison operations. Since we are doing only bitwise
operations, we limited the HElib message space to 2, in order to use only Os and 1s.
Therefore, maximum length for encrypting field when we used message space as 2 was
168, and we used composite event size as 168 when sending to public Siddhi server.
The architecture of EDGAR Comparison benchmark is similar to the topology shown in
Figure 6. Basic criteria is to filter out EDGAR logs, which satisfy following conditions
(See Listing 1.3).

(zone == 0) and (find > 0) and (find < 3)
Listing 1.3. EDGAR comparison condition.

4.5 EDGAR Add/Subtract Benchmark

In EDGAR add/subtract benchmark we have changed the input format to an Integer, for
code, idx, norefer, and find fields in order to support add/subtract operations. The cor-
responding siddhi query which depicts the addition and subtract operations conducted
by this benchmark is shown in Listing 1.4.

@info (name = ’query5’) from

inputEdgarStream select iij_-timestamp , ip, date, time,
zone, cik, accession, extension, code—100 as code, size,
idx+30 as idx, norefer+20 as norefer, noagent, find—10 as
find, crawler, browser insert into outputEdgarStream;

Listing 1.4. EDGAR add/subtract siddhi query.

5 Evaluation

We conducted the experiments using three VMs in Amazon EC2. In this experiment
two VMs were hosted in North Virginia, USA and they were used as private cloud
while the VM used as public cloud was located in Ohio, USA. We used the Email Filter
benchmark in this experiment which does filtering of an email event stream. Out of the
two VMs in North Virginia one was a m4.4xlarge instance which had 16 cores, 64GB
RAM while the private CEP Engine was deployed in a m4.xlarge instance which had 4
CPU cores, 16GB RAM. In m4.4xlarge VM we have deployed ‘event-publisher’ (Event
Publisher) and ‘statistic-collector’ (Event Receiver) modules. The Stream Processor en-
gine running in the public cloud was deployed on the VM running in Ohio which was
a m4.xlarge instance. All the VMs were running on Ubuntu 16.04.2 LTS (Long Term
Support). Using a network speed measurement tool we observed that network speed
between the two VMs in North Virginia was around 730Mbits/sec while the network
speed between North Virginia and Ohio was 500Mbits/sec. Figure 7 shows the architec-
ture of the experiment setup. The input data rate variation of the Email benchmark and
the EDGAR benchmark data sets is shown in Figure 8§ (a) and (b) respectively. The two
charts indicate that the workloads imposed by the two benchmarks have significantly
different characteristics.
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Fig. 7. Experiment setup of HomoESM on Amazon EC2.
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Fig. 8. Input data rate variation of the two benchmarks (a) Email Filter benchmark (b) EDGAR
benchmarks.

5.1 Email Filter Benchmark

In the first round we used Email Filter benchmark. The results of this experiment is
shown in Figure 9. The curve in the blue color (dashed line) indicates the private cloud
deployment. The red color curve indicates the deployment with switching to public
cloud. It can be observed a clear reduction of average latency when switched to the
public cloud in this setup compared to the private cloud only deployment. With homo-
morphic elastic scaling an overall average latency reduction of 2.14 seconds per event
can be observed. This is 10.24% improvement compared to the private cloud only de-
ployment. Note that in all the following charts we have marked the times where VM
start/VM stop operations have been invoked in order to start/stop the VM in the public
cloud. Since VM startup and data sending times are almost similar, in this paper we
assume VM startup time as the data sending time and VM stop time as the point where
we stop sending data to public cloud.
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Fig. 9. Average latency of elastic scaling of the Email Filter benchmark with securing the event
stream sent to public cloud via homomorphic encryption.

5.2 EDGAR Filter Benchmark

In the second round we used EDGAR Filter benchmark for evaluation of our technique.
The results are shown in Figure 10. It can be observed significant performance gain
in terms of latency when switching to public cloud with the EDGAR benchmark. A
notable fact is that EDGAR data set had relatively smaller message size. The average
message size of the EDGAR benchmark was 1.1 KB. The HomoESM mechanism was
able to reduce the delay with considerable improvement of 17%.

Average Latency of running EDGAR Benchmark with HomoESM

Fig. 10. Average latency of elastic scaling of the EDGAR benchmark with Homomorphic filter
operations.

5.3 EDGAR Comparison Benchmark

Next, we evaluated the Homomorphic comparison operation. Here we have used a
slightly modified version of the EDGAR Filter benchmark to facilitate comparison op-
eration in a homomorphic manner. Here also we add lengthy string of 1024 characters
to the existing value of ‘noagent’ field. The results are shown in Figure 11.

We could see only a slight improvement of latency with EDGAR comparison bench-
mark. The improvement of the average latency was around 449 ms which is 3% im-
provement compared to the private only deployment. Compared to equal only operation,
less-than & greater-than operations consume more XOR & AND gate operations in the
Homomorphic Encryption (HE) level. Due to that Siddhi engine processing throughput,
when having homomorphic less-than & greater-than operations is quite low compared
to equal operation only case. Therefore, the portion of events sent to public Siddhi is
lesser than other cases. That’s why we could not see much advantage (only 3%) on
latency curves for both private & public Siddhi setup compared to private Siddhi only
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Fig. 11. Average latency of elastic scaling of the EDGAR benchmark with Homomorphic com-
parison operations.

setup. During the middle spike shown in Figure 11, a 26.17% improvement in latency
was observed.

5.4 EDGAR Add/Subtract Benchmark

Finally, we evaluated the Homomorphic add/subtract operation using the EDGAR bench-
mark. The addition and subtraction HE operations supported message space range is
from 0 to 1201. Although 32-bit full adder circuits using HEIib could increase the range
further we keep this as a further work. The overall improvement was 3.68% for the sce-
nario where 1.5% of the load was sent to the Public VM. We observed a maximum
6.13% performance improvement in the third spike shown in Figure 12.
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Fig. 12. Average latency of elastic scaling of the EDGAR benchmark with Homomorphic Add/-
Subtract operations.

6 Discussion

Privacy preserving data mining in clouds has been an area of significant interest in
recent times. However, none of the previous work on elastic stream processing has
demonstrated the feasibility of conducting elastic privacy preserving data stream pro-
cessing. In this paper we have not only implemented a mechanism for elastic privacy
preserving data stream processing but also have shown considerable performance bene-
fits on real world experiment setups. Results comparing HomoESM to the private cloud
only deployments demonstrate 3-17% latency improvements. Furthermore, during large
workload spikes HomoESM has shown 6-26% latency improvements which is almost
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doubled performance improvement. Workload spikes are the key situations where Ho-
moESM needs to be deployed which indicates HomoESM’s effectiveness in handling
such situations.

Although one could argue that the techniques presented in this paper are restricted
due to the nature of the modern homomorphic encryption techniques, we have overcome
the difficulties via batching and compressing the events, which is one of the key con-
tributions of this paper. We have used high performance VM instance type m4.4xlarge
in the evaluations, because composite event composing & decomposing require more
CPU for publisher and statistics collector. A limitation of FHE is that it needs prior
knowledge of the data to conduct different operations on the encrypted data. Hence,
HomoESM is applicable only for data streams with finite and unchanging data.

7 Conclusion

Privacy has become an utmost important barrier which hinders leveraging IaaS for run-
ning stream processing applications. In this paper we introduce a mechanism called
HomoESM which conducts privacy preserving elastic data stream processing. We eval-
uated our approach using two benchmarks called Email Filter and EDGAR on Amazon
AWS. We observed significant improvements of overall latency of 10% and 17% for
Email Processors and EDGAR data sets with using HomoESM on equality operation.
We also implemented comparison and add/subtract operations in HomoESM which re-
sulted in maximum 26.17% and 6.13% improvement in the average latencies respec-
tively. In future, we plan to extend this work to handle more complicated streaming
operations. We also plan to experiment with multiple query based tuning for privacy
preserving elastic scaling.
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