
Demo: Scalable Complex Event Processing on a Notebook
Miyuru Dayarathna, Minudika Malshan, Srinath Perera, Malith Jayasinghe

WSO2, Inc.
787, Castro Street

Mountain View, CA, USA 94041
{miyurud,minudika,srinath,malithj}@wso2.com

ABSTRACT
Recently data analytics notebooks are becoming attractive
tool for data science experiments. While data analytics
notebooks have been frequently used for batch analytics ap-
plications there are multiple unique problems which need
to be addressed when they are used for online analytics sce-
narios. Issues such as mapping the event processing model
into notebooks, summarizing data streams to enable visual-
izations, scalability of distributed event processing pipelines
in notebook servers remain as some of the key issues to be
solved. As a solution in this demonstration we present an
implementation of event processing paradigm in a notebook
environment. Specifically, we implement WSO2 Data An-
alytics Server (DAS)’s event processor in Apache Zeppelin
notebook environment. We first demonstrate how an event
processing network could be implemented in a stream pro-
cessing notebook itself. Second, we demonstrate how such
network could be extended for distributed stream process-
ing scenario using WSO2 DAS and Apache Storm. Also we
discuss about various improvements which need to be done
at the user interface aspects to develop stream processing
network in such notebook environment.

CCS CONCEPTS
•Information systems → Data streams; •Human-centered
computing → Visualization systems and tools; •Applied
computing → Event-driven architectures;

KEYWORDS
Data Analytics, Notebook, Stream Processing, Complex
Event Processing

ACM Reference format:
Miyuru Dayarathna, Minudika Malshan, Srinath Perera, Malith
Jayasinghe. 2017. Demo: Scalable Complex Event Processing on
a Notebook. In Proceedings of DEBS ’17, Barcelona, Spain, June
19-23, 2017, 4 pages.
DOI: 10.1145/3093742.3095093

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’17, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). 978-1-4503-5065-
5/17/06. . . $15.00
DOI: 10.1145/3093742.3095093

1 INTRODUCTION
Big data analytics is a complicated process which involves
multiple steps such as data gathering, data storage, clean-
ing, model/algorithm building, visualizing, communication,
etc. According to a recent report the accessibility for data
and analytics within organizations are reducing dramatically
because democratization of data analytics creates the poten-
tial for an explosion of creative thinking [6]. Data analytics
pipelines play a pivotal role in this context. Data analytics
notebooks are becoming popular among data analysts as a
means of constructing, managing, and executing interactive,
exploratory data science pipelines in an efficient manner.
Notebooks extend the console-based approach for interac-
tive computing by providing a Read-eval-print loop (REPL)
based web application suitable for conducting the whole com-
putation process: developing, documenting, executing code,
and communicating the results [7]. Notebooks provide multi-
ple advantages for data scientists over the traditional data
analysis user interfaces (UIs) which makes them attractive
tool for interactive data analysis. First, they provide the
ability of revisiting a data analysis process multiple times by
storing the intermediate results inside the notebook. They
can be closed and reopened with the previous analysis results.
Second, most of them provide the ability of interacting with
multiple data analysis tools within one notebook constructing
complex data analysis pipelines with several data analysis
tools/frameworks. This provides the added benefit of lever-
aging the inherent characteristics associated with individual
tool/framework to construct and experiment with complex
data analysis scenarios in an interactive manner.

Traditional use cases for notebooks have been batch ana-
lytics. However, recent batch analytics data flows have been
complimented by streaming (online/real-time) analytics as
well as predictive (i.e., using Machine Learning) pipelines.
Furthermore, some of the notable batch data processing sys-
tems have integrated stream processing capabilities within the
system itself. For example, Apache Spark and Apache Flink
frameworks have capabilities of specifying both batch and
streaming analytics pipelines. Since data analytics notebooks
have been originally developed targeting batch analytics sce-
narios, they remain completely alien for stream processing
scenarios. Several problems exist in introducing stream pro-
cessing model of execution to data analytics notebooks. First,
the method and techniques to follow visualizing event streams
and the operations carried out during the execution of an
event processing network remains a significant challenge.
While there have been previous attempts of visualizing event
streams in tabular forms in spreadsheets, several challenges

© ACM 2017. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems
(DEBS 2017). ACM, New York, NY, http://doi.acm.org/10.1145/3093742.3095093.

DEBS ’17, June 19-23, 2017, Barcelona, Spain M. Dayarathna et al.

exist when using the tabular form of stream representation
in notebooks. Second, techniques need to be explored how a
big data event processing pipeline could be orchestrated in a
notebook environment. For example, suitable visualization
techniques need to be followed which utilizes proper event
summarization.

As a solution in this demonstration we present an event
processing notebook system which explores how to effectively
address the above-mentioned issues. Our notebook consists
of three types of segments which could be used to construct
an end to end scenario of an event processing network. These
are called Data Receiver, Query Processor (Siddhi), and Data
Publisher. The Data Receiver is responsible for making data
streams available for the streaming query networks developed
in the notebook. Query Processor consists of stream process-
ing queries (specified in Siddhi query language). The Data
Publisher is the component which does publishing the event
stream to external subscribers. We demonstrate how effec-
tively a stream processing application can be developed in our
notebook environment by implementing a financial trading
application. Furthermore, we demonstrate how effectively we
could interact with other data analysis systems/frameworks
using WSO2 Data Avalytics Server (DAS) on our notebook
environment.

The rest of the contents of this paper appear as follows.
The related work are listed in Section 2. System design of
event processing notebook is presented in Section 3. We
describe the implementation details in Section 4. We provide
an overview to the demonstration in Section 5 and conclude
the paper in Section 6.

2 RELATED WORK
READ-EVAL-PRINT-LOOP (REPL) is a concept which
evolves from LISP programming language which creates the
basis for data analytics Notebooks [8]. The REPL architec-
ture basically processes a sequence of commands and reports
results immediately to the user. READ operation processes
the syntax of a given expression and internalizes the expres-
sion as a semantic operation on the program state. EVAL
runs the internalized expression and updates the top-level
state accordingly. PRINT outputs the results of the evalu-
ation. LOOP continues the READ,EVAL,PRINT infinitely
until the user terminates the command interpreter. One
drawback of conventional REPL is unless the user explicitly
saves her script/state to a file the entire session is lost when
the REPL environment shutdowns [1]. However, in note-
books model every scripting action is implicitly persisted as
it happens.

Another recently proposed yet heavily influential theme
for notebooks is called Live Programming [2]. This concept
enables more fluid problem solving compared to “edit-compile-
debug” style programming. One of the prominent examples
for Live Programming is spreadsheets. Data and formulae
can be edited and the effects of those edits can be observed
immediately with spreadsheets [2].

There have been several attempts for constructing stream
processing Graphical User Interfaces (GUIs) previously. In
one such works Hirzel et al. discussed the usage of spread-
sheet processors as tools for programming stream processing
applications [3]. They mentioned that while the familiar in-
terface and computation model makes it possible for domain
experts to participate in the development of Complex Event
Processing (CEP) applications natural operations found in
streaming applications such as windowing and partitioning
are not directly expressible in spreadsheets due to the spread-
sheet’s boundedness. However, this work had limitations of
handling dynamic-sized windows and partitions. For example,
with the 2D-spreadsheets model, in a scenario of processing a
stream of stock quotes, one can partition the stock stream by
symbol allocating a different sheet for each symbol. However,
this becomes cumbersome when the number of stock symbols
are large and if all the symbols are not known before. To
overcome this issue Hirzel et al. introduced an improved
stream processing spreadsheet model where an individual
cell can represent a time-based window which is variable
in size and specified using a duration [4]. In this approach
user can specify the partitioning criterion while the spread
sheet shows a debug view of a particular key while the server
conducts the same computation separately for all the keys.
This has enabled processing variable-sized and unbounded
data sets which are common to time-based windows and
partitions. Different from these works in this work our focus
is on notebooks which are web applications with different
type of data organization.

IPython Notebooks are one of the earliest examples for data
analytics notebooks which originated in 2011 [7]. Currently
they are the most widely used notebooks with more than
fifty kernels and more than twenty well known organizations
including Google, Microsoft, and IBM using them.

i2 Analyst’s Notebook [5] developed by IBM is a unique
notebook application which is commercially available in gen-
eral and premium editions. A key feature of this application
is its complete GUI based data analysis functionality [5].

3 SYSTEM DESIGN
We have designed stream processing notebook by generalizing
the stream processing operations into three sub-modules as
Receiver, Siddhi, and Publisher. Furthermore, the system has
been designed for both non-distributed as well as distributed
scenarios. System design of the stream processing notebook
is shown in Figure 1.

3.1 Data Receiver
Data Receiver (i.e., Receiver) is the component designed to
receive input streams. Receiver provides functionality to
create input event streams and provide input event data
which need to be processed. Receiver generates event data
as text or from a Comma Separated Values (CSV) file. It
also allows for creation of streams according to the nature of
event data.

Scalable Complex Event Processing on a Notebook DEBS ’17, June 19-23, 2017, Barcelona, Spain

Receiver

Siddhi Siddhi

Siddhi

Publisher

Notebook

Output

Figure 1: Stream Processing Notebook System De-
sign.

3.2 Query Processor
Query Processor(denoted as Siddhi) component conducts
the processing of streaming data. We use the same term
“Siddhi” to name this component although Siddhi in general
refers to the CEP query language which runs on WSO2
DAS. This component takes care of running the execution
plan with the input events and directing the output to an
output stream which is defined within the execution plan.
Multiple Siddhi components can be grouped together to
create a complete execution plan as shown in Figure 1. Such
organization allows us to use different types of execution
backends with the stream processing notebook. While simple
stream processing application prototypes can be developed
with default Siddhi component, the same set of queries can
be deployed in distributed cluster to run experiments with
large amounts of streaming data.

3.3 Publisher
Publisher component provides facility to analyze output of
the execution process by using Zeppelin’s visualizing tools. In
the current system design, the publisher accepts only single
stream as its input and conducts visualizations of that stream.
Hence, if multiple streams need to be visualized, they should
be directed to multiple publishers or a Siddhi component
should be used to merge streams from multiple publishers
into single stream. In most of the time publisher acts as a
visualization component. If the final output stream needs to
be persisted it can be done with Siddhi component using the
Siddhi’s event tables.

4 IMPLEMENTATION
Our stream processing notebook has been implemented on
top of Apache Zeppelin data analytics notebook. Each of the
three sub-modules described in the above Section have been
implemented as separate Zeppelin interpreters running inside
the Zeppelin server. These interpreters have been grouped
together as an interpreter group named wso2cep (See Figure
2).

Client

Server

Class Loader

HTTP REST / Web Socket

Thrift

Interpreter Group (wso2cep)

Interpreter
(Receiver)

Interpreter
(Siddhi)

Separate JVM Process

Interpreter
(Publisher)

Figure 2: Stream Processing Notebook Implementa-
tion.

The client is a web browser which communicates with the
server via HTTP REST protocol.

5 DEMONSTRATION OVERVIEW
In our demonstration we allow the visitor to experience how
an end to end stream processing application can be developed
using our stream processing notebook. The demonstration
includes the following components.
Receiver. First, we demonstrate the Receiver component
which provides the functionality to create input event data
streams. The Receiver allows for either specify a CSV file
which contains the event data (See Figure 3) or to specify
the events by directly typing their attributes (See Figure 4).

Figure 3: Creating a stream via uploading a CSV
file.

Siddhi. Second, we demonstrate the Siddhi component
which runs the stream processing query. Siddhi interpreter
accepts the input stream created by the Receiver interpreter,
executes the streaming operation (projection in Figure 5),
and outputs the resulting event stream into another stream
which is the output stream. We will also describe how a
Siddhi query network can be deployed in Apache Storm via
the stream processing notebook using Siddhi language’s
annotations.

DEBS ’17, June 19-23, 2017, Barcelona, Spain M. Dayarathna et al.

Figure 4: Creating a stream via directly typing the
data.

Figure 5: A projection query specified in Siddhi in-
terpreter.

Publisher. Finally, we demonstrate the Publisher
component which displays the output using Zeppelin’s
visualization tools. We will visualize the output sent from
the Siddhi interpreter on the Publisher interpreter in
different forms. This include different forms of visualization
such as Tabular (Figure 6), bar chart (Figure 7), and pie
chart (Figure 8).

Figure 6: Visualization of output stream in tabular
format.

Figure 7: Visualization of output stream in bar chart
format.

Figure 8: Visualization of output stream in pie chart
format.

6 CONCLUSION
In this paper we demonstrate an implementation of a stream
processing notebook on top of Apache Zeppelin. We designed
and implemented the stream processing notebook as three in-
terpreters which could be used to create multiple paragraphs
linked together in such a way that it represents a stream
processing application. We demonstrated the capabilities of
the stream processing notebook using an interactive data
stream processing application.

REFERENCES
[1] Mike Barnett, Badrish Chandramouli, Robert DeLine, Steven

Drucker, Danyel Fisher, Jonathan Goldstein, Patrick Morri-
son, and John Platt. 2013. Stat!: An Interactive Analytics
Environment for Big Data. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’13). ACM, New York, NY, USA, 1013–1016. DOI:
http://dx.doi.org/10.1145/2463676.2463683

[2] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean
McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013.
It’s Alive! Continuous Feedback in UI Programming. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13). ACM, New
York, NY, USA, 95–104. DOI:http://dx.doi.org/10.1145/2491956.
2462170

[3] Martin Hirzel, Rodric Rabbah, Philippe Suter, Olivier Tardieu,
and Mandana Vaziri. 2015. Spreadsheets for Stream Partitions and
Windows. In Proceedings of the Second Workshop on Software
Engineering Methods in Spreadsheets co-located with the 37th
International Conference on Software Engineering (ICSE 2015).
39–40.

[4] Martin Hirzel, Rodric Rabbah, Philippe Suter, Olivier Tardieu,
and Mandana Vaziri. 2016. Spreadsheets for Stream Processing
with Unbounded Windows and Partitions. In Proceedings of the
10th ACM International Conference on Distributed and Event-
based Systems (DEBS ’16). ACM, New York, NY, USA, 49–60.
DOI:http://dx.doi.org/10.1145/2933267.2933607

[5] IBM Corporation. 2015. IBM i2 AnalystâĂŹs Notebook Premium.
(2015).

[6] Incisive Media. 2015. Big Data Review 2015: A detailed investi-
gation into the maturing of Big Data analytics. (2015).

[7] The IPython Development Team. 2015. The IPython Notebook.
URL: https://ipython.org/ipython-doc/3/notebook/notebook.
html. (2015).

[8] Makarius Wenzel. 2014. Interactive Theorem Proving: 5th In-
ternational Conference, ITP 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings. Springer International Publishing,
Cham, Chapter Asynchronous User Interaction and Tool Integra-
tion in Isabelle/PIDE, 515–530. DOI:http://dx.doi.org/10.1007/
978-3-319-08970-6_33

http://dx.doi.org/10.1145/2463676.2463683
http://dx.doi.org/10.1145/2491956.2462170
http://dx.doi.org/10.1145/2491956.2462170
http://dx.doi.org/10.1145/2933267.2933607
https://ipython.org/ipython-doc/3/notebook/notebook.html
https://ipython.org/ipython-doc/3/notebook/notebook.html
http://dx.doi.org/10.1007/978-3-319-08970-6_33
http://dx.doi.org/10.1007/978-3-319-08970-6_33

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Data Receiver
	3.2 Query Processor
	3.3 Publisher

	4 Implementation
	5 Demonstration Overview
	6 Conclusion
	References

